为了进行牌照识别,需要以下几个基本的步骤:
· 牌照定位,定位图片中的牌照位置;
· 牌照字符分割,把牌照中的字符分割出来;
· 牌照字符识别,把分割好的字符进行识别,终组成牌照号码。
牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个佳的区域作为牌照区域,并将其从图象中分割出来。
实际应用中,牌照识别系统的识别率与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素的影响。这些影响因素不同程度上降低了牌照识别的识别率,也正是牌照识别系统的困难和挑战所在。为了提高识别率,除了不断的完善识别算法,还应该想办法克服各种光照条件,使采集到的图像利于识别。
当车辆接近出入口的时候,车辆检测器会自动感应到车辆的到来,然后触发车牌识别一体机进行图像抓拍,然后将抓拍的图像发送到数据处理服务器,安装在数据服务器上的车牌识别软件对图像进行处理,定位出牌照位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码保存下来,图像和车牌号码均保存在数据处理服务器上。
自然光路线是指白天利用自然光线,夜间采用辅助照明光源,用彩色摄像机采集车辆真彩色图像,用彩色图像分析处理方法识别车牌。自然光真彩色识别技术路线,与人眼感光习惯一致,并且,真彩色图像能够反映车辆及其周围环境真实的图像信息,不仅可以用来识别车牌照,而且可以用来识别车牌照颜色、车流量、车型、车颜色等车辆特征。用一个摄像机采集的图像,同时实现所有前端基本视频信息采集、识别和人工辅助图像取证判别,可以前瞻性的为未来的智能交通系统工程预留接口。
一个车牌识别系统是否实用,重要的指标是识别率。国际交通技术作过的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。信路通的车牌识别系统在实际应用中已经达到了全牌正确识别率90%以上。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。
识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。例如,在高速公路收费中车牌识别应用的作用之一是减少通行时间,速度是这一类应用里减少通行时间、避免车道堵车的有力保障。国际交通技术提出的识别速度是1秒以内,越快越好。
将车牌识别设备安装于出入口,记录车辆的牌照号码、出入时间,并与自动门、栏杆机的控制设备结合,实现车辆的自动管理。应用于停车场可以实现自动计时收费,也可以自动计算可用车位数量并给出提示,实现停车收费自动管理节省人力、提率。应用于智能小区可以自动判别驶入车辆是否属于本小区,对非内部车辆实现自动计时收费。在一些单位这种应用还可以同车辆调度系统相结合,自动地、客观地记录本单位车辆的出车情况。
车牌识别系统在停车场中能够起到很大的作用,有助于推动停车场收入,特别是对丁一些机动型用户来说,能够随时释放山停车位,加大停车的梳动量。基丁停车场的车牌识别系统是一个基于视频监控和门禁系统合二为一的平台。该平台不仅允许终端用户查看视频信息,也可以让他们拉制摄像头,让系统抓拍到车牌信息后方可进入停车,停车费用明细可Web访问获取信息。